Coordinating Web-based Systemswith Documentsin
XML Spaces

Robert Tolksdorf! and Dirk Glaubitz?

L Technische Universitat Berlin, Fachbereich Informatik, FLP/KIT,
Sekr. FR 6-10, Franklinstr. 28/29, D-10587 Berlin, Germany,
mailto:tolk@cs.tu-berlin.de, http://www.cs.tu-berlin.de/ tolk,

2 mailto:glaubitz@cs.tu-berlin.de

Abstract. We describe an extension to the Linda model of coordination for Web-
based applications. It allows XML documents to be stored in a coordination space
from where they can be retrieved based on multiple matching relations amongst
XML documents, including those given by XML query-languages. XMLSpaces
is distributed and supports several distribution policies in an extensible manner.
We describe the partial replication schema implemented in detail.

1 Introduction

While the Web has become the universal information system worldwide in the first
decade of its existence, the progress towards cooperative information systems utilizing
the Web for universal access is rather slow. Although there are several technologies like
Java or CORBA available, none of these has reached universal acceptance.

A core question in supporting such distributed systems is on the concept applied
for the coordination of independent activities in a cooperative whole. This has been
the subject of the study of coordination models, languages and systems ([PA98]). The
work described here follows the approach to design a separate coordination language
([GC92]) that deals exclusively with the aspects of the interplay of entities and provides
concepts orthogonal to computation.

Most recently, the Web-Standard XML (Extensible Markup Language) ([Wor98b])
has become the format to exchange data markup following application specific syntaxis.
It may well be the dominating interchange format for data over networks for the next
years. XML data is semi-structured and typed by an external or internal document type
or by a minimal grammar inferred from the given document. A DTD (Document Type
Definition) defines a context-free grammar to which an XML document must adhere.
Tags define structures within a document that encapsulate further data. With attributes,
certain meta information about the data encapsulated can be expressed. While XML en-
ables collaboration in distributed and open systems by providing common data formats,
it is still unclear how components coordinate their work.

The concept of XMLSpaces presented in this paper marries the common communi-
cation format XML with the coordination language Linda ([Gla00,TGO01]). It aims at
providing coordination in Web-based cooperative information systems. XMLSpaces of-
fers a simple yet flexible approach to coordinate components in that context and extends
the original Linda-notion with a more flexible matching concept.



This paper is organized as follows. We first look at the coordination language Linda
and show how XMLSpaces extends it with XML documents in tuple-fields. We describe
the extensible support for multiple matching relations amongst XML documents. After
that, we describe the distribution concept applied, with special emphasis on the partial
replication scheme implemented, and how distributed events are provided. After brief
looks at our implementation platform and related work, we conclude.

2 Linda-like Coordination

Linda-like languages are based on data-centric coordination models. They introduce the
notion of a shared dataspace that decouples partners in communication and collabora-
tion both in space and time ([CG89]).

The coordination media in Linda is the tuplespace which is a multiset of tuples.
These are in turn ordered lists of unnamed fields typed by a set of primitive types. An
example is (10,"Hello”) which consists of an integer and a string.

The tuplespace provides operations that uncouple the coordinated entities in time
and space by indirect, anonymous, undirected and asynchronous communication and
synchronization. The producer of data can emit a tuple to the tuplespace with the op-
eration out({10,"Hello”)). The consumer of that data does not even have to exist at the
time it is stored in the space. The producer can terminate before the data is consumed.

To consume some data, a process has to describe what kind of tuple shall be re-
trieved. This description is called a template, which is similar to tuples with the ex-
ception, that fields also can contain bottom-elements for each type, eg. (10,?string).
These placeholders are called formals in contrast to actuals which are fields with a
value. Given a template, the tuplespace is searched for a matching tuple. A matching
relation on templates and tuples guides that selection.

Retrieving a matching tuple is done by in({10,?string)) which returns the match
and removes it from the space. The primitive rd({10,?string)) also returns a match but
leaves the tuple in the tuplespace. Both primitives block until a matching tuple is found,
thereby synchronizing the consumer with the production of data.

The Linda matching relation requires the same length of tuples and templates and
identical types of the respective fields. For formals in the template, the actual in the
tuple has to be of same type, while actuals require the same value in the tuple.

Tuples as in Linda can be considered “primitive data” — there are no higher order
values such as nested tuples, no mechanisms to express the intention of typing fields
such as names etc. When aiming at coordination in Web-based systems, a richer form
of data is needed. It has to be able to capture application specific higher data-structures
easily without the need to encode them into primitive fields. The format has to be open
so that new types of data can be specified. And it has to be standardized in some way,
so that data-items can be exchanged between entities that have different design-origins.

The Extensible Markup Language XML ([Wor98b]) has recently been defined as a
basis for application specific markup for networked documents. It seems to meet all the
outlined requirements as a data-representation format to be used in a Linda-like system
for open distributed systems. XMLSpaces is our system that uses XML documents in
addition to ordinary tuple fields to coordinate entities with the Linda-primitives.



3 XML Spaces

XMLSpaces extends the Linda model in several major aspects:

1. XML documents serve as fields within the coordination space. Thus, ordinary tu-
ples are supported, while XML documents can be represented as one-fielded tuples.

2. A multitude of relations amongst XML documents can be used for matching. While
some are supplied, the system is open for extension with further relations.

3. XMLSpaces is distributed so that multiple dataspace servers at different locations
form one logic dataspace. A clearly separated distribution policy can easily be tai-
lored to different network restrictions.

4. Distributed events are supported so that clients can be notified when a tuple is added
or removed somewhere in the dataspace.

We describe these extensions in this and the following sections.

In XMLSpaces, actual tuple fields can contain an XML document, formal fields
can contain some XML document description, such as a query in an XML query lan-
guage. The matching relation is extended on the field-field level with relations on XML
documents and expressions from XML query languages. All Linda operations, and the
matching rule for other field-types and tuples are unchanged.

The matching rule to use for XML fields is not statically defined, instead, XML-
Spaces supports multiple matching relations on XML documents. The current imple-
mentation of XMLSpaces builds on a standard implementation of Linda, namely TSpaces
(IWMLF98]). It already provides the necessary storage management and the basic im-
plementations for the Linda primitives.

In TSpaces, tuple fields are instances of the class Field. It provides a method called
matches(Field f) that implements the matching-relation amongst fields and returns true
if it holds. The method is called by the matching method of class SuperTuple, which
tests for equal length of tuples and templates. Actuals and formals are not modeled as
distinguished classes but rather typed according to their use in matching.

XMLSpaces introduces the class XMLDocField as a subclass of Field. The contents
of the field is typed as an actual or a formal by fulfilling a Java-interface. If it implements
the interface org.w3c.dom.Document, it is an actual field containing an XML document.
If it implements the interface XMLMatchable, it is a formal. Otherwise it is an invalid
contents for an XMLDocField.

The method matches of an XMLDocField object tests the polarity of fields for
matching. It returns false, when both objects are typed as formals, or when an actual is
to be matched against a formal. If both the XMLDocField-object and the parameter to
matches are actuals, a test for equality is performed. Otherwise — if a formal is to be
matched against an XML document — the method xmIMatch of the formal is used to
test a matching relation. Figure 1 shows the resulting class hierarchy.

4 Multiple matching relations

The purpose of the interface XMLMatchable is to allow for a variety of matching re-
lations amongst XML documents. The template used for in and rd then, is not relative



<<TSpaces>>
SuperTuple
matches(t : SuperTuple) : boolean

<<TSpaces>>
Field

matches(f : Field) : boolean

7

\ XMLDocField
\ matches(f : Field) : boolean

<<Interface>>
Serializable

FieldContent

<<Interface>>
XMLMatchable

xmIMatch(xmlAsDoc : org.w3c.dom.Document) : boolean

<<Interface>>
org.w3c.dom.Document

N

‘ ActualObject

e

‘ Fom alObject

ExactMatch

‘ RestrictedEqualityMatch ‘

‘ DoctypeMatch ‘ ‘ XMLAndMatchable

DTDMatch XMLXOrMatchable
XQLMatch XMLOrMatchable
XPathMatch XMLNotMatchable

Fig. 1. The class hierarchy for XML documents in tuple fields in UML notation

to the language definition as with Linda, but relative to a relation on XML documents
and XML templates that is contained within the template as the implementation of xml-
Match in XMLMatchable.



The use of multiple matching relations can be an application requirement. We find
such a requirement in the Workspaces architecture ([Tol00a, Tol00b, TS01]). Workspaces
is a Web-based workflow system which combines concepts from the application domain
workflow management with standard Internet technology, namely XML and XSL, and
with coordination technology.

Steps are the basic kind of activity in Workspaces and represent a unit of work on
some application specific XML document. Each step is represented as an XML doc-
ument that can be distributed individually for interpretation by the XSL-based Work-
spaces engine. As a result, distributed workflows can be coordinated via the Web. A
complete Workflow is described as a graph in an XML-document. It is split into a set
of individual steps in an XSL-based compilation step.

Figure 2 shows an example of such a workflow graph — in this case describing the
review process for papers submitted to a conference. The application specific docu-
ments being manipulated are the papers submitted and reviews forms to be filled out by

members of a program committee.
Collect
reviews

Collect

Handout
copies of
papers

<DECISION
NO="3">

<DECISION
NO="3"> Distribute

accept?

</DECISIO!

<DECISION>...

<DECISION>...
</DECISION>

<DECISION
NO="3">

accept
</DECISIO

Fig. 2. A WorkSpaces workflow for reviewing conference submissions

Each step is described in another document, the step document. It contains an XSL
script interpreted by the WorkSpaces engine to automatically transform documents, eg.
the “Collect reviews” step, to call external applications as with the “Answer questions”
step, or to wait for events external to the system as seen for the step “Think and lookup”.
XSL scripts are valid XML documents.

The Workspaces engine utilizes XMLSpaces as shown in figure 3. First, some work
description is retrieved with an in by requesting an XML document that matches the
step DTD. Then, the necessary application specific XML document is requested by
referring to some identifier in an attribut of a tag of the document. Then, the actual
work is performed as described by the step document. Finally, the changed document
is put back to the XMLSpaces with an out operation.

During execution of a workflow, one might try to retrieve “something to do”, which
means a document that follows the DTD used for the description of steps. If, however, a
specific task is to be done on a specific application document, one wants that one XML



step
document

2: step
document

XML
document

step
description
ep

st
description XML
document

XML document
document

XML XML
document 5: out— document'

Fig. 3. Usage of XMLSpaces in Workspaces

XML WorkSpaces
engine

document that might be described by an identifier in an attribute. This requirement
induces the need for support of multiple relations used in matching.

The individual Workspaces engines benefit from the application of this kind of coor-
dination technology. They are completely uncoupled and can be distributed and mobile.
The number of engines participating in the system can be dynamic as new engines can
join and leave at whatever time and location they want. The engine that will process fu-
ture steps does not necessarily have to run when the workflow starts to execute. These
attractive advantages of our architecture are due to the use of coordination technology
and indicate its usefulness. The decoupled coordination style, indirected by a coordina-
tion medium that masks any issues of distribution and synchronization, thus gives huge
technical freedom for a distributed and open implementation.

XMLMatchable is also the basis of the extensibility of XMLSpaces with new match-
ing relations. To realize it, a new class has to be provided that implements this interface
and tests for the new relation in the xmIMatch method. Figure 4 shows an implemen-
tation of one matching routine. Here, the XQL-engine from GMD-IPSI is used. The
example shows the ease of integration of further matching routines in XMLSpaces.

While the XML standard defines one relation, namely “validates” from an XML
document to a DTD, there is a variety of possible other relations amongst XML docu-
ments and other forms of templates. These include:

— An XML document can be matched to another one based on equality of contents,
or on equality of attributes in elements.

— An XML document can be matched to another one which validates against the same
grammar, ie. DTD.

— An XML document can be matched to another one which validates against the same
minimal grammar with or without renaming of element- and attribute-names.

— An XML document can be matched to a query expression following the syntax and
semantics of those, for example XML-QL, XQL, or XPath/Pointer.



package matchingrel ation;
i mport xm spaces. XM_Mat chabl e;
i mport java.io.*;
i mport org.w3c.dom Docunent;
i mport de.gnd.ipsi.xql.*;
public class XQ.Match inpl enments XM_.Mat chabl e{
String query;
public XQ.Match(String xql Query){
query = xql Query;

}
publ i ¢ bool ean xm Mat ch(Docunment xm AsDoc) {
/1 forward to GVD-I PSI XQ. engi ne
return XQ.. mat ch(query, xm AsDoc);
}
}

Fig. 4. The implementation of XQL-matching

Relation Meaning Tool used
Exact equality Exact textual equality DOM interfaces
Restricted equality Textual equality ignoring comments,

processing instructions, etc. DOM interfaces
DTD Valid towards a DTD IBM XML4J Parser
DOCTYPE Uses specific Doctype name DOM DocumentType
XPath Fulfills an XPath expression Xalan-Java
XQL Fulfills an XQL expression GMD-IPSI XQL-Engine
AND Fulfills two matching relations -
NOT Does not fulfill matching relation -
OR Fulfills one or two matching relations —
XOR Fulfills one matching relation -

Table 1. Matching relations in XMLSpaces

Currently, several relations are implemented in XMLSpaces as shown in table 1.
The relations fall into different categories:

— The equality relations use several views on what equality of XML documents actu-
ally means. For example, whether comments are included in a check or not.

— The DTD relations take the relation of a document to a DTD or a doctype name as
constituent for matching.

— The query language relations build on several existing XML oriented query lan-
guages. A query describes a set of XML documents to which the query matches.
The query match then is taken as the matching relation in the sense of XMLSpaces.
Note that the query languages are of high expressibility, for example, matching for
all documents that contain a specific value in some attribute can be formulates as an



XPath or XQL expression. While the equality and DTD relations consider a docu-
ment as a whole, the query relations try to find a match in one part of a document.

— The connector relations allow it to build boolean expressions on matching relations
whose result gives the final matching relation.

5 Distributed XML Spaces

In order to make XMLSpaces usable to coordinate wide-area applications, it has to
support some form of distribution. It seems to be without question, that centralized
coordination platforms suffer from major problems concerning performance and com-
munication bottlenecks, single point of failure ([TRO0]) etc. XMLSpaces supports the
integration of XML Spaces servers at different places into a single logic dataspace.

Distribution of a Linda-like system can be implemented using different distribution
schemata which have different efficiency characteristics:

Centralized: One server holds the complete dataspace.

Distributed: All servers hold distinct subsets of the complete dataspace.

Full replication: All servers hold consistent copies of the complete dataspace.
Partial replication: Subsets of servers hold consistent copies of subsets of the data-
space ([Fra91]).

Hashing: Matching tuples and templates are stored at the same server selected by
some hashing function ([Bjo92]).

XMLSpaces does not prescribe one specific approach but encapsulates the distribution
strategy applied in a distributor object. It takes care of the registration of a server in
the distributed space and offers distributed versions of the coordination primitives at its
interface as shown in table 2.

Method: Explanation

register: Registers the server in the distributed tuplespace

deregister: Deregisters the server in the distributed tuplespace

distributedWrite: Performs an out of the argument tuple to the distributed space
distributedWaitToTake: Performs an in from the distributed space with the argument template
distributedWaitToRead: Performs a rd from the distributed space with the argument template
distributedEventRegister: Registers for the distributed event described in the argument
distributedEventDeRegister: Deregisters for the distributed event described in the argument

Table 2. The methods of any Distributor object

The implementation of the distributor object implements a distribution strategy by
the respective versions of these methods. XMLSpaces servers are configured with a
distribution strategy at startup. At that time, a respective Distributor object is created



for the XMLSpaces server, whose register method is used to make the server known to
remote ones. Exact details of this process are specific to the chosen distribution strategy.

The registration of a server at a remote server is handled by an object of the class Re-
moteTSSReception. Depending on the distribution strategy, it registers the new server
and provides it with a reference to an object of class RemoteTSSReceiver to which
further communication on the distributed coordination primitives is directed.

Figure 5 shows the resulting configuration of objects. After exchanging the initial
messages R1 and R2 with the Remote TSSReception, the Distributor object now has ref-
erences to the local space, and to remote spaces as required by the distribution schema.
All coordination primitives directed to the local XMLSpaces server are redirected to the
distributor object. There, the primitives are implemented by local and remote accesses
as given by the strategy.

Node 1 Node 2
|w RemoteTSS

Reception

R1:

XMLSpaces |
Client Server Distributor
A

XMLSpaces
Server
B

RemoteTSS
Receiver

Fig. 5. Server on node 1 connecting to server on node 2

In the case of a distributed strategy without replication, for example, an out is imple-
mented as a simple local out, while an in first searches locally and then tries to retrieve
a match remotely. For a centralized scheme, the Distributor would simply forward the
primitives to the central server. Replication schemas are implemented using methods to
add, search, lock and delete tuples offered at the Remote TSSReceiver object.

XMLSpaces is open in the sense that, with a suited distribution strategy, servers can
joinand leave at any time. As the distributor object has to know about registered servers,
its interface includes respective methods to register and deregister remote servers.

Currently, XMLSpaces includes implementations of the centralized and partial repli-
cation strategy. The system can easily be extended by other distributor objects that im-
plement other strategies. The choice of the distribution policy is configured at startup in
a configuration file.

The partial replication schema is depicted in figure 6. The nodes in the distributed
XMLSpaces each store a subset of the complete contents of the data store. The nodes
organized in so called out-sets contain identical replicas of a subset as in figure 6(a).
An out-operation transmits the argument data to all members of the out-set for storage.
Every node is at the same time a member of a so called in-set. The nodes within one
in-set store different subsets of the complete dataspace and the union of their contents
represents the whole dataspace. Thus, any in- or rd-operation asks all nodes in the in-
set for a match. In contrast to [Tol98], XMLSpaces does not use a software-bus for
communication but members of a set communicate point-to-point.



,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,
T T

€1951n0
€1951n0

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(a) The grid (b) Simulating nodes

Fig. 6. Partial Replication

The structure formed by the sets has to be rectangular — a condition that cannot
be upheld in the case of open systems with a varying number of participating nodes.
Therefore, the structure has to be retained by simulating nodes if necessary. As shown
in figure 6(b), one physical node then is part of two out- or in-sets. The reconfiguration
of the system in the case of joining and leaving nodes is part of the protocol for joining
and leaving nodes.

In XMLSpaces, there is exactly one special node, the receptionist, that decides one-
at-a-time how new nodes join the structure. It can but does not have to be colocated
with a tuplespace server. The receptionist knows about the complete structure of nodes
in the system. When a new node joins, it asks the receptionist for its place in the net-
work. Based on heuristics on the fraction of simulated nodes or considerations about the
communication efficiency in the in- and out-sets, the receptionist decides on a place in
the grid-structure. It informs the new node about the nodes in the target in- and out-sets
and perhaps on the address of a simulated node that it shall replace.

There are three possible situations for the placement of a new node:

1. The new node is to replace a simulated node. The new node thus has to copy the
state of some existing node in the out-set and stop all operations on the out-set.
Then, it registers with all out-set nodes in order to participate in future operations.
For registration in the in-set, all nodes there have to be informed that messages
shall not be sent to the simulating node but to the new one. When this change is
acknowledged, the integration of the new node is complete.

2. The new node is the first one in a new in-set. The receptionist first generates a new
in-set which completely consists of simulated nodes, one for each out-set. After
that, the new node replaces one of the simulated ones as described.

3. The new node is the first one in a new out-set. It then has to simulate all other nodes
in that set. To do so, it registers with all in-sets to complete the integration.

When nodes are to leave the structure, there are two main variants:



1. There are other real nodes in the out-set. In this case, the receptionist decides, what
other node will simulate the leaving node and the nodes it simulates in turn. As all
nodes are in the same out-set, there is no state to be transferred. The leaving node
has to inform the nodes in its in-set about the simulating node. After it deregistered
with the nodes in its out-set, it has left the structure.

2. The leaving node is the last real node in the out-set. The leaving node then has to
deregister with all in-sets it is member of as a real or simulated node. Any remaining
data can be moved to some other out-set and the node has left the structure.

It turns out, that the strategies distributed and full replication as mentioned above are
special cases of partial replication: The distributed strategy uses only one in-set while
full replication uses only one out-set. They can be implemented by changing the de-
cision of receptionist on the placement of new nodes in that respective one set. XML-
Spaces offers respective subclasses of the Receptionist class. There is no need to intro-
duce additional subclasses of Distributor.

6 Distributed events

TSpaces supports events that can be raised when a tuple is entered or removed from
the dataspace. XMLSpaces extends this mechanism to support distributed events where
clients can register for an event occuring somewhere in the distributed dataspace. As
working with distributed events depends on the distribution strategy used, it is imple-
mented in the Distributor object.

Supporting distributed events requires mechanisms to register for events, to unreg-
ister, notifying about events and handling registered events when integrating new nodes
into the grid-structure.

In the case of partial replication, registering and deregistering for events has to be
done on all nodes of the in-set. Events are delivered either locally to clients or forwarded
to servers in the in-set, that inform their registered clients.

When a new node joins the system by replacing a simulated node, it has to copy all
event registrations along with the state. If it forms a new in-set, there are no registrations
that have to be considered. Finally, if it forms a new out-set, it has to synchronize with
all event registrations on all of its in-sets.

When leaving a system, all locally and remotely registered events have to be dereg-
istered. If the node was the last in its out-set, the registrations can simply be deleted,
as no more events will happen. If the leaving node will be simulated afterwards, all
registered events have to be transferred to the simulating node.

As with the distribution strategy, it turns out, that distributed and full replication are
special cases of partial replication also with respect to events and thus, the distributor
implementation can remain unchanged.

7 Implementation

XMLSpaces extends the original Linda conception with XML documents and distri-
bution. It does not change the set of primitives supported nor affect the implemented



internal organization of the dataspace. Thus, we have chosen to build on an existing
Linda-implementation, namely TSpaces ([WMLF98]).

TSpaces is attractive for this purpose, as it is an object-oriented implementation in
Java and the XML support can be easily introduced by subclassing. Also, all issues
of server management can be reused for XMLSpaces. In order to support distribution,
the original TSpaces implementation had to be extended at some places. TSpaces al-
lowed for a rapid implementation of XMLSpaces focusing on the extensions. However,
it could well be exchanged by some other extensible Linda-kernel.

The standard document object model DOM ([Wor98a]), level 1, serves as the in-
ternal representation of XML documents in actual fields. This leads to a great flexibil-
ity to extend XMLSpaces with further matching relations using a standard API. It has
shown that the integration of such an engine into XMLSpaces is extremely simple when
written in Java and utilizing DOM. If not, some wrapper-object has to be specified in
addition. XMLSpaces itself is completely generic towards how the xmIMatch-method
is implemented and what its semantics are.

As seen in table 1, the huge amount of XML related software provided engines that
could directly evaluate the relations on XML documents we are interested in.

8 Redated Work

There are some projects documented on extending Linda-like systems with XML doc-
uments. However, XMLSpaces seems to be unique in its support for multiple matching
relations and its extensibility.

MARS-X ([CLZ00]) is an implementation of an extended JavaSpaces ([FHA99])
interface. Here, tuples are represented as Java-objects where instance variables corre-
spond to tuple fields. Such an tuple-object can be externally represented as an element
within an XML document. Its representation has to adhere to a tuple-specific DTD.
MARS-X closely relates tuples and Java objects and does not look at arbitrary relations
amongst XML documents.

XSet ([2J00]) is an XML database which also incorporates a special matching re-
lation amongst XML documents. Here, queries are XML documents themselves and
match any other XML document whose tag structure is a strict superset of that of the
query. It should be simple to extend XMLSpaces with this engine.

The note in [Mof99] describes a preversion for an XML-Spaces. However, it pro-
vides merely an XML based encoding of tuples and Linda-operations with no signifi-
cant extension. Apparently, the proposed project was not finished up to now.

TSpaces has some XML support built in ((WMLF98]). Here, tuple fields can contain
XML documents which are DOM-objects generated from strings. The scan-operation
provided by TSpaces can take an XQL query and returns all tuples that contain a field
with an XML document in which one or more nodes match the XQL query. This ignores
the field structure and does not follow the original Linda definition of the matching
relation. Also, there is no flexibility to support further relations on XML documents.



9 Conclusion and Outlook

XMLSpaces is a distributed coordination platform that extends the Linda coordination
language with the ability to carry XML documents in tuple fields. It is able to support
multiple matching relations on XML documents. Both the set of matching relations and
the distribution strategy are extensible.

XMLSpaces satisfies the need for better structured coordination data in the Web
context by using XML in an open end extensible manner. It has shown that the Linda
concept can be extended easily while retaining the original concepts on coordination
and a very small core of the coordination language.

Future technological extensions of XMLSpaces include the use of DOM level 2
object model ([Wor00a]) to represent XML documents. This standard supports XML
Namespaces ([Wor00b]) which is necessary to support the full set of XML core speci-
fications in XMLSpaces. Also, this might lead to further matching relations. Issues for
extending the functionality are in the areas of security, and fault-tolerance, including
extending the transaction concept already existing in TSpaces.

Currently, XMLSpaces is static in its configuration of the distribution policy. A
future extension will be support for runtime compaosition of the system similar to Open-
Spaces ([DHNO0O]). In order to do so, the distributor objects have to be able to establish
some “normalized” distribution state from which a new strategy can be built.

Efficiency and scalability of the runtime system has not yet been evaluated. Cur-
rently, the system uses RMI for the communication amongst nodes. Using a direct TCP
or better UDP protocol for this purpose would speed up the communication.

http://www.cs.tu-berlin.de/"tolk/xmlspaces gives further details about XMLSpaces.

Acknowledgment The IBM Almaden Research Center supported the work on XML-
Spaces by granting a license to the TSpaces source code.

References

[Bjo92] Robert Bjornson. Linda on Distributed Memory Multiprocessors. PhD thesis, Yale
University Department of Computer Science, 1992. Technical Report 931.

[CG89] Nicholas Carriero and David Gelernter. Linda in Context. Communications of the
ACM, 32(4):444-458, 1989.

[CLZ00] Giacomo Cabri, Letizia Leonardi, and Franco Zambonelli. XML Dataspaces for Mo-
bile Agent Coordination. In 15th ACM Symposium on Applied Computing, pages 181—
188, 2000.

[DHNOO] Stéphane Ducasse, Thomas Hofmann, and Oscar Nierstrasz. OpenSpaces: An Object-
Oriented Framework For Reconfigurable Coordination Spaces. In Antonio Porto and
Gruia-Catalin Roman, editors, Coordination Languages and Models, LNCS 1906,
pages 1-19, Limassol, Cyprus, September 2000.

[FHAQ9] Eric Freeman, Susanne Hupfer, and Ken Arnold. JavaSpaces principles, patterns, and
practice. Addison-Wesley, Reading, MA, USA, 1999.

[Fra91] Craig Fraasen. Intermediate Uniformly Distributed Tuple Space on Transputer Meshes.
In J.P. Banatre and D. Le Métayer, editors, Research Directionsin High-Level Parallel
Programming Languages, number 574 in LNCS, pages 157-173. Springer, 1991.



[GC92]

[Gla00]

[Mof99]

[PAOS]

[TGO1]

[Tol98]

[Tol00a]

[Tol0O0b]

[TROO]

[TS01]

David Gelernter and Nicholas Carriero. Coordination Languages and their Signifi-
cance. Communications of the ACM, 35(2):97-107, 1992.

Dirk Glaubitz. \erteilte Linda-artige Koordination mit XML-Dokumenten. Master’s
thesis, Technische Universitét Berlin, 2000. In German.

David Moffat. XML-Tuples and XML-Spaces, VO0.7.
http://uncled.oit.unc.edu/XML/XMLSpaces.html, Mar 1999.

G. Papadopoulos and F. Arbab. Coordination models and languages. In Advances in
Computers, volume 46: The Engineering of Large Systems. Academic Press, 1998.
Robert Tolksdorf and Dirk Glaubitz. XMLSpaces for Coordination in Web-based Sys-
tems. In Proceedings of the Tenth |EEE International Workshops on Enabling Tech-
nologies: Infrastructure for Collaborative Enterprises WET |CE 2001. IEEE Computer
Society, Press, 2001.

Robert Tolksdorf. Laura - A Service-Based Coordination Language. Science of Com-
puter Programming, Special issue on Coordination Models, Languages, and Applica-
tions, 1998.

Robert Tolksdorf. Coordinating Work on the Web with Workspaces. In Proceedings of
the |EEE Ninth International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises WET | CE 2000. IEEE Computer Society, Press, 2000.
Robert Tolksdorf. Coordination Technology for Workflows on the Web: Workspaces.
In Proceedings of the Fourth International Conference on Coordination Models and
Languages COORDINATION 2000, LNCS. Springer-Verlag, 2000.

R. Tolksdorf and A. Rowstron. Evaluating Fault Tolerance Methods for Large-Scale
Linda-Like Systems. In Proceedings of the 2000 International Conference on Parallel
and Distributed Processing Techniques and Applications (PDPTA’ 2000), 2000.

Robert Tolksdorf and Marc Stauch. Using XSL to Coordinate Workflows. In U. Killat
and W. Lamersdorf, editors, Kommunikation in Verteilten Systemen (KiVS), Informatik
Aktuell, pages 127-138. Springer Verlag, 2001.

[WMLF98] P. Wyckoff, S. McLaughry, T. Lehman, and D. Ford. T Spaces. |BM Systems Jour-

nal, 37(3):454-474, 1998.

[Wor98a] World Wide Web Consortium. Document Object Model (DOM) Level 1 Specification.

W3C Recommendation, 1998. http://www.w3.0rg/TR/REC-DOM-Level-1.

[Wor98b] World Wide Web Consortium. Extensible Markup Language (XML) 1.0. W3C Rec-

ommendation, 1998. http://www.w3.org/TR/REC-xml.

[Wor00a] World Wide Web Consortium. Document Object Model (DOM) Level 2 Core Speci-

fication. W3C Recommendation, 2000. http://www.w3.0rg/TR/DOM-Level-2-Core.

[Wor00b] World Wide Web Consortium. Namespaces in XML. W3C Recommendation, 2000.

[Z300]

http://www.w3.0rg/TR/REC-xml-names.

Ben Yanbin Zhao and Anthony Joseph. The XSet XML Search Engine and XBench
XML Query Benchmark. Technical Report UCB/CSD-00-1112, Computer Science
Division (EECS), University of California, Berkeley, 2000. September.



